Abstract

This study explores the ice flow acceleration (21.1%) of Pedersenbreen during 2016–2017 after the extremely warm winter throughout the whole Arctic in 2015/2016 using in situ data and quantitatively analyses the factors contributing to this acceleration. Several data sets, including 2008–2018 air temperature data from Ny-Alesund, ten-year in situ GPS measurements and Elmer/Ice ice flow modelling under different ice temperature scenarios, suggest that the following factors contributed to the ice flow acceleration: the softened glacier ice caused by an increase in the air temperature (1.5°C) contributed 2.7%–30.5%, while basal lubrication contributed 69.5%–97.3%. The enhanced basal sliding was mostly due to the increased surface meltwater penetrating to the bedrock under the rising air temperature conditions; consequently, the glacier ice flow acceleration was caused mainly by an increase in subglacial water. For Pedersenbreen, there was an approximately one-year time lag between the change in air temperature and the change in glacier ice flow velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call