Abstract
An Ultra-High Pressure Liquid Chromatography Time-of-Flight Mass Spectrometry (UHPLC-TOF-MS) method for quantitative analysis of 30 drugs in whole blood was developed and validated. The method was used for screening and quantification of common drugs and drugs of abuse in whole blood received from autopsy cases and living persons. The compounds included: alprazolam, amphetamine, benzoylecgonine, bromazepam, cathine, cathinone, chlordiazepoxide, cocaine, codeine, clonazepam, 7-aminoclonazepam, diazepam, nordiazepam, flunitrazepam, 7-aminoflunitrazepam, ketamine, ketobemidone, 3,4-Methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine, methadone, morphine, 6-monoacetylmorphine, nitrazepam, 7-aminonitrazepam, oxazepam, temazepam, tramadol, O-desmethyltramadol, and zolpidem. Blood samples (200 μL) were subjected to Solid Phase Extraction (SPE). Target drugs were quantified using a Waters ACQUITY UPLC system coupled to a Waters SYNAPT G2 TOF-MS apparatus. Extraction recoveries ranged from 41% (7-aminoclonazepam) to 111% (ketamine) and matrix effects ranged from -13% (temazepam) to 50% (7-aminonitrazepam). For all compounds, a quadratic polynomial was applied for fitting the calibration curves. Lower Limits of Quantification (LOQ) ranged from 0.005 to 0.05 mg/kg. Satisfactory precisions below 15% and accuracies within 85-115% were obtained for all compounds at concentrations exceeding the LOQ. In conclusion, we present a validated UHPLC-TOF-MS method for simultaneous quantification of 30 drugs in whole blood with a run time of 15 min using 200 μL of whole blood.
Highlights
In toxicology, the usual approach is to screen for the presence of drugs and subsequently carry out a quantification of positive findings
The method was used for screening and quantification of common drugs and drugs of abuse in whole blood received from autopsy cases and living persons
Extraction recoveries ranged from 41% (7-aminoclonazepam) to 111% and matrix effects ranged from -13% to 50% (7-aminonitrazepam)
Summary
The usual approach is to screen for the presence of drugs and subsequently carry out a quantification of positive findings. For optimal quantification, deuterated internal standards are usually required, so in practice it is not possible to combine general screening for several hundred compounds with quantification of all compounds that might be found in one analytical run. It might be possible to quantify a limited number of frequently occurring compounds, say about 30 compounds. In the present study we were interested in investigating the ability of a LC-TOF system to simultaneously carry out screening for a wide range of compounds as previously described and quantification of a more limited, frequently occurring subset of compounds [12]. The results were primarily related to those recently reported by Bjork, et al [13]. based on a UHPLC-MS/MS method for 31 commonly occurring medicinal and illicit drugs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.