Abstract

Surgery is the only curative treatment for primary hyperparathyroidism. Parathyroid scintigraphy is one method used to preoperatively localize the lesion. We examined time-related changes in radiopharmaceutical uptake in parathyroid adenomas (PTAs) and thyroid gland by quantitative single-photon-emission computed tomography (SPECT) imaging to assess differences between rapid and delayed washout patterns. The study group consisted of 35 histologically verified PTAs after radio-guided surgery extirpation in 33 patients with primary hyperparathyroidism. Patients underwent a three-phase SPECT/CT study of the neck and upper thorax post 99mTc-methoxyisobutylisonitrile (MIBI) injection. Images were reconstructed using a proprietary ordered-subset-conjugate-gradient-maximization algorithm (Siemens xSPECT Quant). PTAs were divided into those with a rapid (group A) and those with a slow (group B) washout pattern. SUVmax values of PTAs and thyroid gland tissue at 10, 90 and 180 min post 99mTc-MIBI injection were recorded and statistically assessed. Retention indexes related to the early examination were calculated for PTA and thyroid gland (RI-PTA and RI-TG). There were 11 PTAs in group A and 24 in group B. Significant between-group differences in PTA SUVmax and PTA/thyroid gland ratios were observed only at 180 min postinjection (P = 0.0297, P = 0.0222, respectively). RI-PTAs differed significantly at 90 and 180 min postinjection (P = 0.0298, P = 0.0431). No differences in PTA volumes, thyroid gland SUVmax values or RI-TG were observed between the groups. PTAs with rapid and slow washout patterns have different characteristics on quantitative analysis in later phases. No significant differences in directly measurable quantitative values (SUVmax, PTA/thyroid gland ratio) at the early stages of multi-phase examination were observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call