Abstract

We describe a novel method for quantitatively mapping fluidic temperature with high spatial resolution within microchannels using fluorescence lifetime imaging in an optically sectioning microscope. Unlike intensity-based measurements, this approach is independent of experimental parameters, such as dye concentration and excitation/detection efficiency, thereby facilitating quantitative temperature mapping. Micrometer spatial resolution of 3D temperature distributions is readily achieved with an optical sectioning approach based on two-photon excitation. We demonstrate this technique for mapping of temperature variations across a microfluidic chip under different heating profiles and for mapping of the 3D temperature distribution across a single microchannel under applied flow conditions. This technique allows optimization of the chip design for miniaturized processes, such as on-chip PCR, for which precise temperature control is important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call