Abstract

ObjectiveTo assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data.MethodsImage analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data.ResultsFor each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head–neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head–neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW.ConclusionsThese findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis.Key Points• CT is being increasingly used to assess bony involvement in osteoarthritis• CBM provides accurate and reliable quantitative analysis of cortical bone thickness• Cortical bone is thicker at the superior femoral head–neck with worse osteoarthritis• Regions of increased thickness co-locate with impingement and osteophyte formation• Quantitative 3D bone analysis could enable clinical disease prediction and therapy developmentElectronic supplementary materialThe online version of this article (doi:10.1007/s00330-015-4048-x) contains supplementary material, which is available to authorized users.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call