Abstract

For any given metabolic pathway, isotope redistribution coefficients (a(ij)) that characterize the specific derivation of each hydrogen atom can be defined. By using quantitative deuterium NMR, the redistribution of deuterium at natural abundance in lactic acid produced by the bacterial fermentation of glucose has been determined for each non-labile hydrogen atom of glucose or water and the hydrogen atoms of lactic acid. Distinct differences are observed in the lactic acid isolated from Lactococcus lactis and Leuconostoc mesenteroides that can be interpreted in terms of the different fermentative pathways used. Specifically, the affiliations observed between the H1, H3, and H4 positions of glucose with methyl and hydroxymethylene of lactic acid can give quantitative information on whether the glycolytic or the reductive pentose-phosphate pathway was involved in glucose catabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.