Abstract
The genetic basis of schizophrenia is obscure. In an XX male patient with schizophrenia we previously showed that one X;Y translocation breakpoint was in pseudoautosomal region 1 (PAR1) with the effect that the proximal segment of PAR1 from the PAR1 boundary to acetylserotonin N-methyl transferase (ASMT) distally was triplicated in this patient. This study determined whether dosage imbalances of X-Y homologous regions in general are associated with schizophrenia. A multiplex semi-quantitative polymerase chain reaction assay was developed to quantify MIC2 gene as a representative of PAR1 and compare it with the SYBL1 gene which maps in pseudoautosomal region 2 (PAR2) and protocadherin XY (PCDHXY), located at Xq21.3. Each of these three loci was co-amplified with the autosomal gene MSX2 using Cy5-labelled primers and the products separated by electrophoresis in polyacrylamide gels. Results were expressed as ratios of peak area of the target gene to MSX2 which served as an internal dosage control. Using genomes with sex chromosome aneuploidies, the method was found sensitive enough to detect a two-fold difference in gene copy number. We confirmed the MIC2 triplication in the XX male patient but found no significant difference in gene dosage of MIC2, PCDHXY and SYBL1 in a panel of 17 patients with schizophrenia compared to controls. No evidence was obtained for gene dosage imbalances in MIC2, PCDHXY and SYBL1 in patients with schizophrenia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.