Abstract

The oxygen atom transfer reactivity (OAT) of dioxo-Mo(VI) complexes of hydrotrispyrazolyl borate (hydrotris(3,5-dimethylpyrazolyl)borate, Tp(Me2); hydrotris(3-isopropylpyrazol-1-yl)borate, Tp(iPr)) with tertiary phosphines (PMe(3), PMe(2)Ph, PEt(3), PEt(2)Ph, PBu(n)(3), PMePh(2), or PEtPh(2)) has been investigated. In acetonitrile, these reactions proceed via the formation of a phosphoryl intermediate complex that undergoes a solvolysis reaction. We report the synthesis and characterization of several phosphoryl complexes. The rates of formation of phosphoryl complexes and their solvation were determined by spectrophotometry. The rates of the reactions and the properties of the phosphoryl species were investigated using the Quantitative Analysis of Ligand Effect (QALE) methodology. The results show that, at least in this system, the first step of the reaction is controlled primarily by the steric factor, and in the second step, both electronic and steric factors are important. We also analyzed the effect of ligands on the reaction rate i.e., Tp(Me2)vs. Tp(iPr).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call