Abstract

Spinal cord pathology, such as demyelination and axonal loss, is a common feature in multiple models of central nervous system (CNS) injury and disease. Development of methods to quantify spinal cord pathology objectively would aid studies designed to establish mechanisms of damage, correlate pathology with neurologic function, and assess therapeutic interventions. In this study, we describe sensitive methods to objectively quantify spinal cord demyelination, remyelination, atrophy, and axonal loss following the initiation of a progressive inflammatory demyelinating disease with Theiler's murine encephalomyelitis virus (TMEV). Spinal cord demyelination, remyelination, and atrophy were quantified from representative 1-microm-thick cross sections embedded in Araldite plastic using interactive image analysis. In addition, this study demonstrates novel, automated methodology to quantify axonal loss from areas of normal-appearing white matter, as a measure of secondary axonal injury following demyelination. These morphologic methods, which are applicable to various models of CNS injury, provide an innovative way to assess the benefits of therapeutic agents, to determine mechanisms of spinal cord damage, or to establish a correlation with sensitive measures of neurologic function. J. Neurosci Res 58:492-504.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call