Abstract

Using stable isotope labeling and mass spectrometry, we performed a sensitive, quantitative analysis of multiple phosphorylation sites of the epidermal growth factor (EGF) receptor. Phosphopeptide detection efficiency was significantly improved by using the tyrosine phosphatase inhibitor sodium pervanadate to boost the abundance of phosphorylation of the EGF receptor. Nine phosphorylation sites (pT669, pS967, pS1002, pY845, pY974, pY1045, pY1086, pY1148, and pY1173) of EGF receptor were quantified from EGF-stimulated cells in suspension and adherent conditions. Our data sets revealed that EGF stimulation of adherent cells induced higher levels of tyrosine phosphorylation relative to EGF stimulation of suspended cells. In contrast, EGF stimulation of adherent cells induced lower levels of serine and threonine phosphorylation relative to EGF stimulation of suspended cells. These findings are consistent with the hypothesis that cellular adhesion modulates phosphorylation of plasma membrane receptor tyrosine kinases relevant for EGF-induced signal transduction processes. Furthermore, our results suggest that strong phosphatase inhibitors should be used to generate reference datasets in comparative phosphoproteomics experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.