Abstract

Chemical probes were used to study the formation of hydroxyl radical in aqueous iron–hydrogen peroxide reaction. Hydroxyl radical formation rate and time dependent concentration were determined in pure water, in aqueous fulvic acid (FA) and humic acid (HA) solutions, and in natural surface waters. Indirect determinations of hydroxyl radical were made by quantitating hydroxyl radical reactions with probe compounds under controlled conditions. High probe concentrations were used to determine radical formation rates and low probe concentrations were used to determine time dependent radical concentration. Two independent probes were used for intercomparison: benzoic acid and 1-propanol. Good agreement between the two probes was observed. Natural water matrices resulted in lower radical formation rates and lower hydroxyl radical concentrations, with observed formation rate and yield in natural waters up to four times lower than in pure water. HA and FA also reduced hydroxyl radical formation under most conditions, although increased radical formation was observed with FA at certain pH values. Hydroxyl radical formation increased linearly with hydrogen peroxide concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call