Abstract

Purpose To determine whether human papillomavirus (HPV) DNA can be detected in the plasma of patients with HPV-positive oropharyngeal carcinoma (OPC) and to monitor its temporal change during radiotherapy. Methods and Materials We used polymerase chain reaction to detect HPV DNA in the culture media of HPV-positive SCC90 and VU147T cells and the plasma of SCC90 and HeLa tumor-bearing mice, non-tumor-bearing controls, and those with HPV-negative tumors. We used real-time quantitative polymerase chain reaction to quantify the plasma HPV DNA in 40 HPV-positive OPC, 24 HPV-negative head-and-neck cancer patients and 10 non-cancer volunteers. The tumor HPV status was confirmed by p16INK4a staining and HPV16/18 polymerase chain reaction or HPV in situ hybridization. A total of 14 patients had serial plasma samples for HPV DNA quantification during radiotherapy. Results HPV DNA was detectable in the plasma samples of SCC90- and HeLa-bearing mice but not in the controls. It was detected in 65% of the pretreatment plasma samples from HPV-positive OPC patients using E6/7 quantitative polymerase chain reaction. None of the HPV-negative head-and-neck cancer patients or non-cancer controls had detectable HPV DNA. The pretreatment plasma HPV DNA copy number correlated significantly with the nodal metabolic tumor volume (assessed using 18F-deoxyglucose positron emission tomography). The serial measurements in 14 patients showed a rapid decline in HPV DNA that had become undetectable at radiotherapy completion. In 3 patients, the HPV DNA level had increased to a discernable level at metastasis. Conclusions Xenograft studies indicated that plasma HPV DNA is released from HPV-positive tumors. Circulating HPV DNA was detectable in most HPV-positive OPC patients. Thus, plasma HPV DNA might be a valuable tool for identifying relapse. To determine whether human papillomavirus (HPV) DNA can be detected in the plasma of patients with HPV-positive oropharyngeal carcinoma (OPC) and to monitor its temporal change during radiotherapy. We used polymerase chain reaction to detect HPV DNA in the culture media of HPV-positive SCC90 and VU147T cells and the plasma of SCC90 and HeLa tumor-bearing mice, non-tumor-bearing controls, and those with HPV-negative tumors. We used real-time quantitative polymerase chain reaction to quantify the plasma HPV DNA in 40 HPV-positive OPC, 24 HPV-negative head-and-neck cancer patients and 10 non-cancer volunteers. The tumor HPV status was confirmed by p16INK4a staining and HPV16/18 polymerase chain reaction or HPV in situ hybridization. A total of 14 patients had serial plasma samples for HPV DNA quantification during radiotherapy. HPV DNA was detectable in the plasma samples of SCC90- and HeLa-bearing mice but not in the controls. It was detected in 65% of the pretreatment plasma samples from HPV-positive OPC patients using E6/7 quantitative polymerase chain reaction. None of the HPV-negative head-and-neck cancer patients or non-cancer controls had detectable HPV DNA. The pretreatment plasma HPV DNA copy number correlated significantly with the nodal metabolic tumor volume (assessed using 18F-deoxyglucose positron emission tomography). The serial measurements in 14 patients showed a rapid decline in HPV DNA that had become undetectable at radiotherapy completion. In 3 patients, the HPV DNA level had increased to a discernable level at metastasis. Xenograft studies indicated that plasma HPV DNA is released from HPV-positive tumors. Circulating HPV DNA was detectable in most HPV-positive OPC patients. Thus, plasma HPV DNA might be a valuable tool for identifying relapse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.