Abstract

BackgroundA retrospective analysis of estimates of tumor glucose uptake from 1,192 dynamic 2-deoxy-2-(18F)fluoro-D-glucose-positron-emission tomography [FDG-PET] scans showed strong correlations between blood glucose and both the uptake rate constant [Ki] and the metabolic rate of glucose [MRGluc], hindering the interpretation of PET scans acquired under conditions of altered blood glucose. We sought a method to reduce this glucose bias without increasing the between-subject or test-retest variability and did this by considering that tissue glucose transport is a saturable yet unsaturated process best described as a nonlinear function of glucose levels.MethodsPatlak-Gjedde analysis was used to compute Ki from 30-min dynamic PET scans in tumor-bearing mice. MRGluc was calculated by factoring in the blood glucose level and a lumped constant equal to unity. Alternatively, we assumed that glucose consumption is saturable according to Michaelis-Menten kinetics and estimated a hypothetical maximum rate of glucose consumption [MRGlucMAX] by multiplying Ki and (KM + [glucose]), where KM is a half-saturation Michaelis constant for glucose uptake. Results were computed for 112 separate studies of 8 to 12 scans each; test-retest statistics were measured in a suitable subset of 201 mice.ResultsA KM value of 130 mg/dL was determined from the data based on minimizing the average correlation between blood glucose and the uptake metric. Using MRGlucMAX resulted in the following benefits compared to using MRGluc: (1) the median correlation with blood glucose was practically zero, and yet (2) the test-retest coefficient of variation [COV] was reduced by 13.4%, and (3) the between-animal COVs were reduced by15.5%. In statistically equivalent terms, achieving the same reduction in between-animal COV while using the traditional MRGluc would require a 40% increase in sample size.ConclusionsMRGluc appeared to overcorrect tumor FDG data for changing glucose levels. Applying partial saturation correction using MRGlucMAX offered reduced bias, reduced variability, and potentially increased statistical power. We recommend further investigation of MRGlucMAX in quantitative studies of tumor FDG uptake.

Highlights

  • A retrospective analysis of estimates of tumor glucose uptake from 1,192 dynamic 2-deoxy-2-(18F) fluoro-D-glucose-positron-emission tomography [FDG-PET] scans showed strong correlations between blood glucose and both the uptake rate constant [Ki] and the metabolic rate of glucose [MRGluc], hindering the interpretation of PET scans acquired under conditions of altered blood glucose

  • We undertook a large series of tumor imaging studies in mice using the metabolic rate of glucose [MRGluc] from Patlak analysis as our preferred estimate of the tumor glucose uptake rate, expecting it to be relatively unbiased with respect to blood glucose

  • 0 i (Measurementi(baseline) + Measurementi(day3)). Both Ki and MRGluc are correlated with blood glucose levels In some studies, correlations between blood glucose levels and the FDG-PET estimates of glucose uptake rate were readily apparent

Read more

Summary

Introduction

A retrospective analysis of estimates of tumor glucose uptake from 1,192 dynamic 2-deoxy-2-(18F) fluoro-D-glucose-positron-emission tomography [FDG-PET] scans showed strong correlations between blood glucose and both the uptake rate constant [Ki] and the metabolic rate of glucose [MRGluc], hindering the interpretation of PET scans acquired under conditions of altered blood glucose. We considered 2-deoxy-2-(18F)fluoro-D-glucose-positron-emission tomography [FDG-PET] as a pharmacodynamic marker of antitumor activity during treatments that alter systemic blood glucose levels, for example the Akt inhibitors [1], and sought a metric of tumor glucose uptake that had minimal glucose bias. When we undertook a retrospective review of 1,192 such scans performed in study groups of 8 to 12 mice, we observed that our MRGluc data were, strongly correlated with blood glucose even though individual studies were often underpowered to convincingly show this (see Figure 2B). We presumed that this correlation caused additional variability in the uptake measurements. Even in the absence of any active treatment, blood glucose levels were not entirely constant in our studies (see Figure 3), so we sought to apply a rational glucose correction to the MRGluc data, noting that the bias reduction benefit

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.