Abstract

Quantitative expression of a specific 55,000 (55K)-molecular-weight cellular protein was studied in two groups of mouse embryo fibroblast (clonal) cells originating from two parent clones, one of which possessed high tumorigenicity and the other of which possessed very low tumorigenicity. From the clone with low tumorigenicity, tumor lines and clones were obtained by selecting rare spontaneously transformed highly tumorigenic (mutant) cells. Cells were labeled during exponential growth for 3 h at 37 degrees C, with [35S]methionine, and the cellular 55K protein was immunoprecipitated with a monoclonal antibody and quantitated. There were low and approximately equal amounts of 55K protein in cells (clones) with both low and high tumorigenicity from both groups of cells, and there was no correlation at all between quantitative expression of 55K protein and of cellular tumorigenicity. There was approximately 10- to 20-fold more 55K protein in all simian virus 40-transformed T antigen-positive derivative clones, as shown previously. The T antigen-negative revertant tumor lines and clones obtained by an immunological in vivo selection method had low amounts of 55K protein, similar to the parent cell before simian virus 40 transformation. In all of the T antigen-negative cells, including the highly tumorigenic cells, degradation (turnover?) of the 55K protein was rapid, and a half-life of 15 to 60 min was estimated from pulse-chase experiments. In all of the T antigen-positive cells the 55K protein was stable (half-life greater than 10 h). In primary cells established from the tumors induced by highly tumorigenic cells there was a very low or no detectable amount of the 55K protein. This is in contrast to the primary cells obtained from early murine embryos in which we have reported high amounts of (stable) 55K proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call