Abstract

In this paper we consider the analysis and design of an output feedback controller for a perturbed nonlinear system in which the output is sampled and quantised. Using the attractive ellipsoid method, which is based on Lyapunov analysis techniques, together with the relaxation of a nonlinear optimisation problem, sufficient conditions for the design of a robust control law are obtained. Since the original conditions result in nonlinear matrix inequalities, a numerical algorithm to obtain the solution is presented. The obtained control ensures that the trajectories of the closed-loop system will converge to a minimal (in a sense to be made specific) ellipsoidal region. Finally, numerical examples are presented in order to illustrate the applicability of the proposed design method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.