Abstract
Plots of array Comparative Genomic Hybridization (CGH) data often show special patterns: stretches of constant level (copy number) with sharp jumps between them. There can also be much noise. Classic smoothing algorithms do not work well, because they introduce too much rounding. To remedy this, we introduce a fast and effective smoothing algorithm based on penalized quantile regression. It can compute arbitrary quantile curves, but we concentrate on the median to show the trend and the lower and upper quartile curves showing the spread of the data. Two-fold cross-validation is used for optimizing the weight of the penalties. Simulated data and a published dataset are used to show the capabilities of the method to detect the segments of changed copy numbers in array CGH data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.