Abstract
Quantile regression for functional partially linear model in ultra-high dimensions is proposed and studied. By focusing on the conditional quantiles, where conditioning is on both multiple random processes and high-dimensional scalar covariates, the proposed model can lead to a comprehensive description of the scalar response. To select and estimate important variables, a double penalized functional quantile objective function with two nonconvex penalties is developed, and the optimal tuning parameters involved can be chosen by a two-step technique. Based on the difference convex analysis (DCA), the asymptotic properties of the resulting estimators are established, and the convergence rate of the prediction of the conditional quantile function can be obtained. Simulation studies demonstrate a competitive performance against the existing approach. A real application to Alzheimer’s Disease Neuroimaging Initiative (ADNI) data is used to illustrate the practicality of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.