Abstract

Global Climate Models (GCMs) simulate low resolution climate projections on a global scale. The native resolution of GCMs is generally too low for societal-level decision-making. To enhance the spatial resolution, downscaling is often applied to GCM output. Statistical downscaling techniques, in particular, are well-established as a cost-effective approach. They require significantly less computational time than physics-based dynamical downscaling. In recent years, deep learning has gained prominence in statistical downscaling, demonstrating significantly lower error rates compared to traditional statistical methods. However, a drawback of regression-based deep learning techniques is their tendency to overfit to the mean sample intensity. Extreme values as a result are often underestimated. Problematically, extreme events have the largest societal impact. We propose Quantile-Regression-Ensemble (QRE), an innovative deep learning algorithm inspired by boosting methods. Its primary objective is to avoid trade-offs between fitting to sample means and extreme values by training independent models on a partitioned dataset. Our QRE is robust to redundant models and not susceptible to explosive ensemble weights, ensuring a reliable training process. QRE achieves lower Mean Squared Error (MSE) compared to various baseline models. In particular, our algorithm has a lower error for high-intensity precipitation events over New Zealand, highlighting the ability to represent extreme events accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.