Abstract
Quantile regression allows us to assess different possible impacts of covariates on different quantiles of a response variable. Additive models for quantile functions provide an attractive framework for non‑parametric regression applications focused on functions of the response instead of its central tendency. Total variation smoothing penalties can be used to control the smoothness of additive components. We write down a general approach to estimation and inference for additive models of this type. Quantile regression as a risk measure has been applied in sector portfolio analysis for a data set from the Warsaw Stock Exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.