Abstract

Vibrio cholerae is best known as the infectious agent that causes the human disease cholera. Outside the human host, V. cholerae primarily exists in the aquatic environment, where it interacts with a variety of higher aquatic species. Vertebrate fish are known to be an environmental host and are a potential V. cholerae reservoir in nature. Both V. cholerae and the teleost fish species Danio rerio, commonly known as zebrafish, originate from the Indian subcontinent, suggesting a long-standing interaction in aquatic environments. Zebrafish are an ideal model organism for studying many aspects of biology, including infectious diseases. Zebrafish can be easily and rapidly colonized by V. cholerae after exposure in water. Intestinal colonization by V. cholerae leads to the production of diarrhea and the excretion of replicated V. cholerae. These excreted bacteria can then go on to colonize new fish hosts. Here, we demonstrate how to assess V. cholerae-intestinal colonization in zebrafish and how to quantify V. cholerae-induced zebrafish diarrhea. The colonization model should be useful to researchers who are studying whether genes of interest may be important for host colonization and/or for environmental survival. The quantification of zebrafish diarrhea should be useful to researchers studying any intestinal pathogen who are interested in exploring zebrafish as a model system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.