Abstract

The risk of airborne disease transmission in hospital rooms during aerosol-generating medical procedures is known to be influenced by the size of the room, air ventilation rate, input-to-output flow ratio, vent surface area, and vent location. However, quantitative recommendations for each ventilation design parameter are scarce. Moreover, room layout and occupant activity parameters, such as furniture locations and healthcare worker movement, are often omitted from studies on airborne disease transmission in hospital settings. As a result, the development of policies and technologies aimed at mitigating airborne disease transmission in hospitals has been limited. To address this shortfall, this study is aimed at first characterizing existing ventilation, room layout, and occupancy parameters in hospital rooms where aerosol generation medical procedures (AGMPs) occur and then testing the hypotheses that ventilation, room layout, and occupancy parameters vary significantly between hospital rooms and, in some cases, with time. Information on AGMPs was collected via a survey circulated to healthcare workers within British Columbia’s Interior Health Authority (IHA), while hospital room and ventilation system information was collected by reviewing drawing packages of 37 IHA hospital rooms. The survey results indicate that AGMPs commonly occur in trauma, ICU, or general ward rooms with positive or negative pressure ventilation systems. Statistical tests, with room type (trauma, ICU, or general), room pressure (positive or negative), and/or time as independent variables, show that variables relating to ventilation (number of supply vents, supply and exhaust vent location, ventilation rate, and supply and exhaust area) and room layout (congestion score, room volume, light area, and number of lights) vary with room type but not with room pressure. Occupant activity variables (number of workers, number of moving workers, and speed score) also vary with room type, although to differing extent with room pressure and time. The survey and drawing review data presented in this study can help guide systematic comparisons of mitigative technologies as well as parametric investigations on how room layout, ventilation, and operational parameters influence airborne disease spread. This is a crucial first step in achieving quantitative and clinically relevant recommendations for mitigating airborne disease transmission in healthcare settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call