Abstract

The escalating concerns surrounding urban air pollution's impact on both the environment and human health have prompted increased attention from researchers, policymakers, and citizens alike. As such, this study addresses growing concerns about urban air pollution's impact on the environment and human health, emphasizing the need for early, high-resolution PM2.5 pollutant measurements. Utilizing Google Earth Engine (GEE) machine learning algorithms, our study evaluates six models over four years in Tehran and Tabriz. Inputs include satellite imagery, meteorological data, and pollutant measurements from air quality stations. Four models—Histogram Gradient Boosting, Random Forest, Extreme Gradient Boosting, and Ada Boosted Decision Trees—outperform Support Vector Machine and Linear Regression. The selected model, a combination of decision tree algorithms and Ada Boost, achieves a notable correlation coefficient of 79.8% and an RMSE of 0.271 g/m3. This superior performance enables the generation of high-resolution (30-m) PM2.5 estimates for the two cities. The study's comprehensive approach, involving various data sources and advanced machine learning techniques, contributes a valuable method for accurate PM2.5 assessment. The findings hold significance for urban air quality management and provide a potential framework for generating detailed PM2.5 datasets based on Landsat images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call