Abstract

Probabilistic analysis of physical systems requires information on the distributions of random variables. Distributions are typically obtained from testing or field data. In engineering design where tests are expensive, the sample size of such data is small O(10). Identifying correct distributions with small number of samples is difficult. Furthermore, parameters of assumed distributions obtained from small sample data themselves contain some uncertainty. In this study a Johnson SU family distribution function is used to identify shape, location and scale parameters of distribution that can best fit small sample data. A Bayesian inference procedure is used to determine distributions of the parameters. We show that the procedure correctly bounds the tail regions of the distributions and is less conservative than bounds obtained using bootstrap methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.