Abstract

Reflection tomography allows the determination of a propagation velocity model that fits the traveltime data associated with reflections of seismic waves in the subsurface. A least-squares formulation is used to compare the observed traveltimes and the traveltimes computed by the forward operator based on a ray tracing. The solution of this inverse problem is only one among many possible models. A linearized a posteriori analysis is then crucial to quantify the range of admissible models we can obtain from these data and the a priori information. The contribution of this paper is to propose a formalism which allows us to compute uncertainties on relevant geological quantities for a reduced computational time. Nevertheless, this approach is only valid in the vicinity of the solution model (linearized framework), complex cases may thus require a nonlinear approach. Application on a 2D real data set illustrates the linearized approach to quantify uncertainties on the solution of seismic tomography. Finally, the limitations of this approach are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.