Abstract

In this work we introduce and analyze a novel multilevel Monte Carlo (MLMC) estimator for the accurate approximation of central moments of system outputs affected by uncertainties. Central moments play a central role in many disciplines to characterize a random system output's distribution and are of primary importance in many prediction, optimization, and decision making processes under uncertainties. We detail how to effectively tune the MLMC algorithm for central moments of any order and present a complete practical algorithm that is implemented as part of a Python library [1]. In fact, we validate the methodology on selected reference problems and apply it to an aerodynamic relevant test case, namely the transonic RAE 2822 airfoil affected by operating and geometric uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.