Abstract
ABSTRACTTravel time reliability, an essential factor in traveler route and departure time decisions, serves as an important quality of service measure for dynamic transportation systems. This article investigates a fundamental problem of quantifying travel time variability from its root sources: stochastic capacity and demand variations that follow commonly used log-normal distributions. A volume-to-capacity ratio-based travel time function and a point queue model are used to demonstrate how day-to-day travel time variability can be explained from the underlying demand and capacity variations. One important finding is that closed-form solutions can be derived to formulate travel time variations as a function of random demand/capacity distributions, but there are certain cases in which a closed-form expression does not exist and numerical approximation methods are required. This article also uses probabilistic capacity reduction information to estimate time-dependent travel time variability distributions under conditions of non-recurring traffic congestion. The proposed models provide theoretically rigorous and practically useful tools for understanding the causes of travel time unreliability and evaluating the system-wide benefit of reducing demand and capacity variability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.