Abstract

AbstractReserves of fresh groundwater on atoll islands are extremely fragile due to climatic and anthropogenic stresses. Of major concern is the quantity of water to be available in the coming decades under the influence of variable rainfall patterns, rising sea level, environmental conditions, and expected population growth that depends on groundwater resources. In this study, a 3‐dimensional numerical modelling approach using the SEAWAT modelling code is used to estimate freshwater lens volume fluctuation for 4 representative islands in the Republic of Maldives in response to long‐term changes in rainfall, sea‐level rise (SLR), and anthropogenic stresses such as groundwater pumping and short‐term impacts from tsunami‐induced marine overwash events. This work is divided into 2 papers. This first paper presents numerical model set‐up and calibration, and the effect of future rainfall patterns and SLR on fresh groundwater reserves. The second paper focuses on marine overwash events. The results of simulated future freshwater lens volume presented in the first study contribute to efficient groundwater resources planning and management for the Maldives in the upcoming decades. Freshwater lenses in small atoll islands (area < 0.6 km2) are shown to have a strong variability trends in the upcoming decades with expected reduction in lens volume between 11% and 36% due to SLR. In contrast, freshwater lenses in larger atoll islands (area > 1.0 km2) are shown to have less variability to changing patterns with expected reduction in lens volume between 8% and 26% due to SLR. Study results can provide water resource managers with valuable findings for consideration in water security measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call