Abstract

Computing distance between two genomes without alignments or even access to assemblies has many downstream analyses. However, alignment-free methods, including in the fast-growing field of genome skimming, are hampered by a significant methodological gap. While accurate methods (many k-mer-based) for assembly-free distance calculation exist, measuring the uncertainty of estimated distances has not been sufficiently studied. In this paper, we show that bootstrapping, the standard non-parametric method of measuring estimator uncertainty, is not accurate for k-mer-based methods that rely on k-mer frequency profiles. Instead, we propose using subsampling (with no replacement) in combination with a correction step to reduce the variance of the inferred distribution. We show that the distribution of distances using our procedure matches the true uncertainty of the estimator. The resulting phylogenetic support values effectively differentiate between correct and incorrect branches and identify controversial branches that change across alignment-free and alignment-based phylogenies reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.