Abstract

Coupled in situ micro-X-ray computed tomography and volumetric digital image correlation (V-DIC) strain measurements of expanding plug tests revealed the three-dimensional, microstructure-dependent mechanisms behind strain localization, damage initiation and stress redistribution in braided SiC/SiC composites. Hoop strain varied significantly through the composite thickness and was highest at regions of tow crossover; at higher loads, tow fracture initiated at these locations, and sample rupture propagated axially by connecting points of tow overlap. Finally, strain measurements after the failure of a tow on the interior surface quantified the three-dimensional stress redistribution mechanisms and damage tolerance of the SiC/SiC composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.