Abstract

Quantitative understanding of stress transfer between major fault systems can elucidate the kinematics of large-scale plate interactions. This study analyzed right-lateral strike-slip motion on the North Tabriz fault (NTF) in an area where this structure appears to transition into a thrust fault known as the North Mishu fault (NMF). These faults play an important but cryptic role in accommodating stress related to the Arabia-Eurasia plate collision. We analyzed regional velocity vectors from permanent and temporary GPS arrays to estimate changes in fault-parallel and fault-normal slip rates in the transition zone between the NTF and NMF. Independent of its compressional motion, the NMF exhibits a dextral strike-slip rate of ∼2.62 mm/yr. Along the NTF, the right-lateral slip rate decreases and the vertical slip rate on increases at rates of 0.08 and 0.38 mm/yr km, respectively, as the NTF approaches the NMF. This study also used small baseline (SBAS) PS-InSAR results to reveal a NE-SW-striking reverse fault and a developing syncline hidden beneath the Tabriz Basin. Additionally, we calculated the vertical displacement rates using horizontal vectors from the GPS data and mean line-of-sight rate estimates from the SBAS data. While the study area does not express large-scale extrusion, such as that observed in the Anatolian Plate, the transformation of strike-slip motion into thrusting and crustal shortening along the NMF-NTF fault zone accommodates most of the N–S compression affecting the northwestern Iranian Plateau. In this region, small-sized, right-lateral strike-slip faults, and other folded structures form horsetail features. These dispersed structures accommodate eastward extrusion of the northwestern Iranian Plateau.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.