Abstract

Each prokaryote has a unique genomic signature as evidenced by a set of species-specific frequencies of short oligonucleotides. With respect to genomic signatures a bacterial genome is homogenous and the variation within a genome is smaller than the variations between genomes of different species. This study quantifies the species-specificity of genomic signatures in the complete genomes of 57 prokaryotes. The species-specificity in the genomic signature was related to the quantification of other sequence biases, such as G+C content, synonymous codon choice and amino acid usage. The results confirm that the genomic signature is genome-wide with high species-specificity in both coding and non-coding regions. In coding regions the species-specific bias in synonymous codon choice was comparable to the genomic signature, while the bias in amino acid usage only captured about 50% of the species-specific bias in the genomic signature. A correlation between the species-specificity in synonymous codon choice and amino acid usage was identified, in which proteins with species-specific amino acid usage were also coded with species-specific synonymous codon choice. However, we demonstrated that the G+C content captures only approximately 40% of the species-specificity in the genomic signature, and is insufficient to explain the species specificity in the non-coding regions. Thus, the species-specific bias in non-coding regions remains largely unknown. Further, we compared the genomic signature in relation to phylogenetic distance. This was performed in order to illustrate the feasibility of a hierarchical classification scheme in future applications of the described classification methodology in screening for horizontal gene transfer and biodiversity studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.