Abstract
Evapotranspiration (E), a pivotal phenomenon inherent to hydrological and thermal dynamics, assumes a position of utmost importance within the intricate framework of the water–energy nexus. However, the quantitative study of E on a large scale for the “Grain for Green” projects under the backdrop of climate change is still lacking. Consequently, this study examined the interannual variations and spatial distribution patterns of E, transpiration (Et), and soil evaporation (Eb) in the Northern Foot of Yinshan Mountain (NFYM) between 2000 and 2020 and quantified the contributions of climate change and vegetation greening to the changes in E, Et, and Eb. Results showed that E (2.47 mm/a, p < 0.01), Et (1.30 mm/a, p < 0.01), and Eb (1.06 mm/a, p < 0.01) all exhibited a significant increasing trend during 2000–2020. Notably, vegetation greening emerged as the predominant impetus underpinning the augmentation of both E and Eb, augmenting their rates by 0.49 mm/a and 0.57 mm/a, respectively. In terms of Et, meteorological factors emerged as the primary catalysts, with temperature (Temp) assuming a predominant role by augmenting Et at a rate of 0.35 mm/a. Temp, Precipitation (Pre), and leaf area index (LAI) collectively dominated the proportional distribution of E, accounting for shares of 32.75%, 28.43%, and 25.01%, respectively. Within the spectrum of predominant drivers influencing Et, Temp exerted the most substantial influence, commanding the largest proportion at 33.83%. For Eb, the preeminent determinants were recognized as LAI and Temp, collectively constituting a substantial portion of the study area, accounting for 32.10% and 29.50%, respectively. The LAI exerted a pronounced direct influence on the Et, with no significant effects on E and bare Eb. Wind speed (WS) had a substantial direct impact on both E and Et. Pre exhibited a strong direct influence on E, Et, and Eb. Relative humidity (RH) significantly affected E directly. Temp primarily influenced Eb indirectly through radiation (Rad). Rad exerted a significant direct inhibitory effect on Eb. These findings significantly advanced our mechanistic understanding of how E and its components in the NFYM respond to climate change and vegetation greening, thus providing a robust basis for formulating strategies related to regional ecological conservation and water resources management, as well as supplying theoretical underpinnings for constructing sustainable vegetation restoration strategies involving water resources in the region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.