Abstract

A quantum illumination protocol exploits correlated light beams to enhance the probability of detection of a partially reflecting object lying in a very noisy background. Recently a simple photon-number-detection based implementation of a quantum illumination-like scheme has been provided in [Lopaeva {\it et al,}, Phys. Rev. Lett. {\bf 101}, 153603 (2013)] where the enhancement is preserved despite the loss of non-classicality. In the present paper we investigate the source for quantum advantage in that realization. We introduce an effective two-mode description of the light sources and analyze the mutual information as quantifier of total correlations in the effective two-mode picture. In the relevant regime of a highly thermalized background, we find that the improvement in the signal-to-noise ratio achieved by the entangled sources over the unentangled thermal ones amounts exactly to the ratio of the effective mutual informations of the corresponding sources. More precisely, both quantities tend to a common limit specified by the squared ratio of the respective cross-correlations. A thorough analysis of the experimental data confirms this theoretical result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.