Abstract

Abstract Suitable asymmetric microstructures can be used to control the direction of motion in microorganism populations. This rectification process makes it possible to accumulate swimmers in a region of space or to sort different swimmers. Here we study numerically how the separation process depends on the specific motility strategies of the microorganisms involved. Crucial properties such as the separation efficiency and the separation time for two bacterial strains are precisely defined and evaluated. In particular, the sorting of two bacterial populations inoculated in a box consisting of a series of chambers separated by columns of asymmetric obstacles is investigated. We show how the sorting efficiency is enhanced by these obstacles and conclude that this kind of sorting can be efficiently used even when the involved populations differ only in one aspect of their swimming strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.