Abstract

Quantification of the short-range order in amorphous silicon has been formulized using Raman scattering by taking into account established frameworks for studying the spectral line-shape and size dependent Raman peak shift. A theoretical line-shape function has been proposed for representing the observed Raman scattering spectrum from amorphous-Si-based on modified phonon confinement model framework. While analyzing modified phonon confinement model, the term "confinement size" used in the context of nanocrystalline Si was found analogous to the short-range order distance in a-Si thus enabling one to quantify the same using Raman scattering. Additionally, an empirical formula has been proposed using bond polarizability model for estimating the short-range order making one capable to quantify the distance of short-range order by looking at the Raman peak position alone. Both the proposals have been validated using three different data sets reported by three different research groups from a-Si samples prepared by three different methods making the analysis universal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.