Abstract

Public health interventions have been implemented to mitigate the spread of coronavirus disease 2019 (COVID-19) in Ontario, Canada; however, the quantification of their effectiveness remains to be done and is important to determine if some of the social distancing measures can be relaxed without resulting in a second wave. We aim to equip local public health decision- and policy-makers with mathematical model-based quantification of implemented public health measures and estimation of the trend of COVID-19 in Ontario to inform future actions in terms of outbreak control and de-escalation of social distancing. Our estimates confirm that (1) social distancing measures have helped mitigate transmission by reducing daily infection contact rate, but the disease transmission probability per contact remains as high as 0.145 and case detection rate was so low that the effective reproduction number remained higher than the threshold for disease control until the closure of non-essential business in the Province; (2) improvement in case detection rate and closure of non-essential business had resulted in further reduction of the effective control number to under the threshold. We predict the number of confirmed cases according to different control efficacies including a combination of reducing further contact rates and transmission probability per contact. We show that improved case detection rate plays a decisive role to reduce the effective reproduction number, and there is still much room in terms of improving personal protection measures to compensate for the strict social distancing measures.

Highlights

  • Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses that usually cause mild respiratory communicable disorders but can, sometimes, result in a severe and even lethal infection [1]

  • We found that the number of the reported cases keep a fast-increasing trend in Ontario, and the predicted number of cumulative confirmed cases is 6132 as of April 7th without an indication of approaching epidemic peak, suggesting enhanced mitigation measures must be taken

  • 4 Discussion Ontario has been escalating a series of public health measures aimed at containing the COVID-19 outbreak

Read more

Summary

Introduction

Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses that usually cause mild respiratory communicable disorders but can, sometimes, result in a severe and even lethal infection [1]. Coronaviruses are considered re-emerging pathogens, due to globalization, increasing urbanization, frequency of contacts and mixing of various animals in high-density areas [2, 3]. Due to their highly dynamic mutation and recombination. The “Severe Acute Respiratory Syndrome-related Coronavirus type 2” (SARS-CoV-2), initially termed as 2019-nCoV, is an emerging coronavirus, which has caused the latest coronavirus outbreak, which from the first reported epicenter, Wuhan (province of Hubei, People’s Republic of China), has spread out globally, becoming a pandemic [1]. The Canadian government and the province of Ontario has gradually implemented and increasingly enhanced a package of public health control measures, including travel restrictions, closure of schools, universities and several business practices. One third of reported cases are travel-related, with most of them being related to local transmission

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call