Abstract

Of interest in project management is the (i) quantification of the risk associated with project performance and the (ii) identification of the project tasks that contribute most to that risk. Risk in this work addresses delays in project completion. The tasks and precendences are represented with nodes and links, respectively, in a project network whose tasks (i) have stochastic completion times that (ii) are subject to disruptions. An optimization problem is developed to maximize project delay subject to particular stochastic task disruptions, and a genetic algorithm is introduce to identify the critical tasks which lead to the maximum risk of project delay. A small project of 40 tasks and large project of 800 tasks are analyzed. Primary conclusions are (i) that critical tasks need not necessarily be on the critical path if they are subject to considerable uncertainty, and (ii) that project complexity (network topology) matters more in the performance of the algorithm than the number of tasks (network size). In fact, the genetic algorithm solution works well for large-scale projects whose schedules cannot be resolved with conventional techniques. Focus is given to the performance of the algorithm for this project risk context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.