Abstract

Ribonuclease HI (RNHI), a ubiquitous, non-sequence-specific endonuclease, cleaves the RNA strand in RNA/DNA hybrids. RNHI functions in replication and genome maintenance, and retroviral reverse transcriptases contain an essential ribonuclease H domain. Nuclear magnetic resonance (NMR) spectroscopy combined with molecular dynamics (MD) simulations suggests a model in which the extended handle region domain of Escherichia coli RNHI populates (substrate-binding-competent) "open" and (substrate-binding-incompetent) "closed" states, while the thermophilic Thermus thermophilus RNHI mainly populates the closed state at 300 K [Stafford, K. A., Robustelli, P., and Palmer, A. G., III (2013) PLoS Comput. Biol. 9, 1-10]. In addition, an in silico-designed mutant E. coli Val98Ala RNHI was predicted to populate primarily the closed state. The work presented here validates this model and confirms the predicted properties of the designed mutant. MD simulations suggest that the conformational preferences of the handle region correlate with the conformations of Trp85, Thr92, and Val101. NMR residual dipolar coupling constants, three-bond scalar coupling constants, and chemical shifts experimentally define the conformational states of these residues and hence of the handle domain. These NMR parameters correlate with the Michaelis constants for RNHI homologues, confirming the important role of the handle region in the modulation of substrate recognition and illustrating the power of NMR spectroscopy in dissecting the conformational preferences underlying enzyme function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.