Abstract

When biological cells divide, they divide on a given angle. It has been shown experimentally that the orientation of cell division angle for a single cell can be described by a probability density function. However, the way in which the probability density function underlying cell division orientation influences population or tissue scale morphogenesis is unknown. Here we show that a computational approach, with thousands of stochastic simulations modeling growth and division of a population of cells, can be used to investigate this unknown. In this paper we examine two potential forms of the probability density function: a wrapped normal distribution and a binomial distribution. Our results demonstrate that for the wrapped normal distribution the standard deviation of the division angle, potentially interpreted as biological noise, controls the degree of tissue scale anisotropy. For the binomial distribution, we demonstrate a mechanism by which direction and degree of tissue scale anisotropy can be tuned via the probability of each division angle. We anticipate that the method presented in this paper and the results of these simulations will be a starting point for further investigation of this topic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.