Abstract

In the context of urban warming associated with rapid urbanization, the relationship between urban landscape patterns and land surface temperature (LST) has been paid much attention. However, few studies have comprehensively explored the effects of two/three-dimensional (2D/3D) building patterns on LST, particularly by comparing their relative contribution to the spatial variety of LST. This study adopted the ordinary least squares regression, spatial autoregression and variance partitioning methods to investigate the relationship between 2D/3D building patterns and summertime LST across 2016–2017 in Shanghai. The 2D and 3D building patterns in this study were quantified by four 2D and six 3D metrics. The results showed that: (1) During the daytime, 2D/3D building metrics had significant correlation with LST. However, 3D building patterns played a significant role in predicting LST. They explained 51.0% and 10.2% of the variance in LST, respectively. (2) The building coverage ratio, building density, mean building projection area, the standard deviation of building height, and mean building height highly correlated with LST. Specifically, the building coverage ratio was the main predictor, which was obviously positively correlated with LST. The correlation of building density and average projected area with LST was positive and significant, while the correlation of building height standard deviation and average building height with LST was negative. The increase in average height and standard deviation of buildings and the decrease in building coverage ratio, average projected area, and density of buildings, can effectively improve the urban thermal environment at the census tract level. (3) Spatial autocorrelation analysis can elaborate the spatial relationship between building patterns and LST. The findings from our research will provide important insights for urban planners and decision makers to mitigate urban heat island problems through urban planning and building design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call