Abstract

Northern hardwoods are susceptible to a wide range of defects that can reduce the amount of sound wood with desirable qualities, such as the clear sapwood of sugar maple trees. Yet, the rate at which trees decline in quality due to the development of such defects has never been quantified in northern hardwood forests due to a dearth of repeat inventories that record the appearance of defects over time. As a result, it remains uncertain whether, and how, selection management reduces the probability of decline in quality. In this study, we quantify the rate at which trees decline in quality due to the development of defects, and we test several hypotheses regarding the influence of selection management on quality. Our results show that (1) the probability of decline in quality increases as trees grow larger; (2) crown dieback also increases the probability of decline in quality; (3) the probability of decline in quality is slightly lower in managed stands than in unmanaged stands, and (4) the probability of decline in quality increases with the mean annual temperature of the site. Finally, we combined our estimates of the probability of decline in quality with previous estimates of the probability of mortality to assess the overall risk associated with retaining trees of different species, sizes, and vigour profiles. The resulting metric can inform efforts to improve the management of northern hardwood forests by providing an integrated estimate of the risk that the value of a tree will be reduced, or eliminated, due to mortality or decline in quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call