Abstract
AbstractPredicting cognitive scores (e.g., intelligence quotient (IQ)) from functional brain connectomes enables the analysis of the underlying connectivity patterns that determine such abilities. In this context, recent works addressed IQ prediction from connectomes by designing graph neural network (GNN) architectures for regression. While effective, existing studies have two important drawbacks. First, the majority of these works train and evaluate regression GNNs on data from the same distribution. Thus, the performance of the models under domain shifts, where the target training and testing behavioral scores are drawn from different distributions, has not been considered. Second, the proposed architectures do not produce uncertainty estimates for their predictions, limiting their usage in critical real-world settings where data distribution may drastically change and render the predictions unreliable. To cope with this, a few studies proposed proposed Bayesian neural networks for estimating predictive uncertainty. However, these require heavy computation of the training process and have not been applied to regression GNNs. To address this problem, we unprecedentedly propose a deep graph ensemble of regression GNNs for estimating predictive uncertainty under domain shifts. Our main contributions are three-fold: (i) forming ensembles of regression GNNs for estimating their predictive uncertainties, (ii) simulating domain shift between training and test sets by applying clustering algorithms in the target domain, (iii) designing a novel metric for quantifying the uncertainty of GNN ensembles. We believe our study will inspire future research on the performance and uncertainty of GNNs under domain shifts, allowing their use in real-world scenarios. Our code is available at https://github.com/basiralab/predUncertaintywithDomainShift.KeywordsPredictive uncertainty estimationDomain shiftRegression GNNsBrain connectivity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.