Abstract

Submerged aquatic vegetation (SAV) are highly efficient at carbon sequestration and, despite their relatively small distribution globally, are recognized as a potentially valuable component of climate change mitigation. However, SAV mapping in tidal marshes presents a challenge due to optically complex constituents in the water. The emergence and advancement of deep learning-based techniques in the field of habitat mapping with remote sensing imagery provides an opportunity to address this challenge. In this study, an analytical framework was developed to quantify the carbon sequestration of SAV habitats in the Atchafalaya River Delta Estuary from field and remote sensing observations using deep convolutional neural network (DCNN) techniques. A U-Net-based model, Wetland-SAV Network, was trained to identify the SAV percent cover (high, medium, and low) as well as other estuarine habitat types from Landsat 8/9-OLI data. The areal extent of SAV was up to 8% of the total area (47,000 ha). The habitat areas and habitat-specific carbon fluxes were then used to quantify the net greenhouse gas (GHG) flux of the study area for with/without SAV scenarios in a carbon balance model. The total net GHG flux was in the range of −0.13 ± 0.06 to −0.86 ± 0.37 × 105 tonne CO2e y−1 and increased up to 40% (−0.23 ± 0.10 to −0.90 ± 0.39 × 105 tonne CO2e y−1) when SAV was accounted for within the calculation. At the hectare scale, the inclusion of SAV resulted in an increase of ~60% for the net GHG sink in shallow areas adjacent to the emergent marsh where SAV was abundant. This is the first attempt at remotely mapping SAV in coastal Louisiana as well as a first quantification of net GHG flux at the scale of hectares to thousands of hectares, accounting for SAV within these sub-tropical coastal delta marshes. Remote sensing and deep learning models have high potential for mapping and monitoring SAV in turbid sub-tropical coastal deltas as a component of the increasing accuracy of net GHG flux estimates at small (hectare) and large (coastal basin) scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.