Abstract
Climate change is affecting human health worldwide. In particular, changes to local and global climate parameters influence vector and water-borne diseases like malaria, dengue fever, and tick-borne encephalitis. The Republic of Sakha in northern Russia is no exception. Long-term trends of increasing annual temperatures and thawing permafrost have corresponded with the northward range expansion of tick-species in the Republic. Indigenous communities living in these remote areas may be severely affected by human and livestock diseases introduced by disease vectors like ticks. To better understand the risk of vector-borne diseases in Sakha, we aimed to describe the increase and spatial spread of tick-bite cases in the Republic. Between 2000 and 2018, the frequency of tick bite cases increased 40-fold. At the start of the period, only isolated cases were reported in southern districts, but by 2018, tick bites had been reported in 21 districts in the Republic. This trend coincides with a noticeable increase in the average annual temperature in the region since the 2000s by an average of 1 °C. Maps illustrate the northward spread of tick-bite cases. A negative binomial regression model was used to correlate the increase in cases with a number of climate parameters. Tick bite case frequency per district was significantly explained by average annual temperature, average temperature in the coldest month of the year, the observation year, as well as Selyaninov’s hydrothermal coefficient. These findings contribute to the growing literature that describe the relationship between tick abundance and spread in Northern Latitudes and changes in temperatures and moisture. Future studies might use these and similar results to map and identify areas at risk of infestation by ticks, as climates continue to change in Sakha.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.