Abstract

Modulation enhanced single-molecule localization microscopy (meSMLM), where emitters are sparsely activated with sequentially applied patterned illumination, increases the localization precision over single-molecule localization microscopy (SMLM). The precision improvement of modulation enhanced SMLM is derived from retrieving the position of an emitter relative to individual illumination patterns, which adds to existing point spread function information from SMLM. Here, we introduce SpinFlux: modulation enhanced localization for spinning disk confocal microscopy. SpinFlux uses a spinning disk with pinholes in its illumination and emission paths, to sequentially illuminate regions in the sample during each measurement. The resulting intensity-modulated emission signal is analyzed for each individual pattern to localize emitters with improved precision. We derive a statistical image formation model for SpinFlux and we quantify the theoretical minimum localization uncertainty in terms of the Cramér-Rao lower bound. Using the theoretical minimum uncertainty, we compare SpinFlux to localization on Fourier reweighted image scanning microscopy reconstructions. We find that localization on image scanning microscopy reconstructions with Fourier reweighting ideally results in a global precision improvement of 2.1 over SMLM. When SpinFlux is used for sequential illumination with three patterns around the emitter position, the localization precision improvement over SMLM is twofold when patterns are focused around the emitter position. If four donut-shaped illumination patterns are used for SpinFlux, the maximum local precision improvement over SMLM is increased to 3.5. Localization of image scanning microscopy reconstructions thus has the largest potential for global improvements of the localization precision, where SpinFlux is the method of choice for local refinements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.