Abstract

In the standard Bell scenario, when making a local projective measurement on each system component, the amount of randomness generated is restricted. However, this limitation can be surpassed through the implementation of sequential measurements. Nonetheless, a rigorous definition of random numbers in the context of sequential measurements is yet to be established, except for the lower quantification in device-independent scenarios. In this paper, we define quantum intrinsic randomness in sequential measurements and quantify the randomness in the Collins–Gisin–Linden–Massar–Popescu inequality sequential scenario. Initially, we investigate the quantum intrinsic randomness of the mixed states under sequential projective measurements and the intrinsic randomness of the sequential positive-operator-valued measure (POVM) under pure states. Naturally, we rigorously define quantum intrinsic randomness under sequential POVM for arbitrary quantum states. Furthermore, we apply our method to one-Alice and two-Bobs sequential measurement scenarios, and quantify the quantum intrinsic randomness of the maximally entangled state and maximally violated state by giving an extremal decomposition. Finally, using the sequential Navascues–Pironio–Acin hierarchy in the device-independent scenario, we derive lower bounds on the quantum intrinsic randomness of the maximally entangled state and maximally violated state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.