Abstract

Bond distance is a common structural metric used to assess changes in metal-ligand bonds, but it is not clear how sensitive changes in bond distances are with respect to changes in metal-ligand covalency. Here we report ligand K-edge XAS studies on Ni and Pd complexes containing different phosphorus(III) ligands. Despite the large number of electronic and structural permutations, P K-edge pre-edge peak intensities reveal a remarkable correlation that spectroscopically quantifies the linear interdependence of covalent M-P σ bonding and bond distance. Cl K-edge studies conducted on many of the same Ni and Pd compounds revealed a poor correlation between M-Cl bond distance and covalency, but a strong correlation was established by analyzing Cl K-edge data for Ti complexes with a wider range of Ti-Cl bond distances. Together these results establish a quantitative framework to begin making more accurate assessments of metal-ligand covalency using bond distances from readily-available crystallographic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.