Abstract
Myoglobin (Mb) is a model system for ligand binding and migration. The energy barriers (ΔG) for ligand migration in Mb have been studied in the past by experiment and theory and significant differences between different approaches were found. From experiment, it is known that Mb can assume a large number of conformational substates. In this work, these substates are investigated as a possible source of the differences in migration barriers. We show that the initial structure significantly affects the calculated ΔG for a particular transition and that fluctuations in barrier heights δΔG are of similar magnitude as the free energy barriers themselves. The sensitivity of ΔG to the initial structure is compared to other sources of errors. Different protein structures can affect the calculated ΔG by up to 4 kcal/mol, whereas differences between simple point charge models and more elaborate multipolar charge models for the CO-ligand are smaller by a factor of two. Analysis of the structural changes underlying the large effect of the conformational substate reveals the importance of coupling between protein and ligand motion for migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.