Abstract

Owing to climate change and frequent extreme weather events, changes in spring flowering phenology have been observed in temperate forests. The flowering time response to climate change is divergent among species and is difficult to predict due to the complexity of flowering mechanisms. To compare the effects of spring warming, winter chilling, and day length on spring flowering time, we evaluated eight process-based models (two types of forcing models, two types of chilling-forcing models, and four models with the effect of day length added to the aforementioned four models). We used flowering data of seven temperate species (Cornus officinalis, Rhododendron mucronulatum, Forsythia koreana, Prunus yedoensis, Rhododendron yedoense f. poukhanense, Rhododendron schlippenbachii, and Robinia pseudoacacia) observed in nine different arboretums in South Korea over 9 years. Generally, the forcing model performed better than the sequential chilling-forcing model, regardless of the species. The performance gap between the models was reduced when day length term was included in model, but the chilling-forcing model did not outperform the forcing model. The effect of day length on flowering time differed depending on the species. Prunus yedoensis, which had a particularly low warming sensitivity compared to other species, was more dependent on day length than other species. On the other hand, day length had little effect on the flowering time of Robinia pseudoacacia and Cornus officinalis, mostly found in the early successional stage. These findings imply that the effect of chilling on flowering time would be minor for the seven species inhabiting the warm-temperate forest, and the effect of day length on flowering time was species-specific and dependent on species' temperature (warming) sensitivity and life strategy. In the future warm climate, the flowering time of day length sensitive species would not advance significantly, which may result in a phenological mismatch and endanger their life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.