Abstract

The relation between auditory filters estimated from psychophysical methods and peripheral tuning was evaluated using a computational auditory-nerve (AN) model that included many of the response properties associated with nonlinear cochlear tuning. The phenomenological AN model included the effects of dynamic level-dependent tuning, compression, and suppression on the responses of high-, medium-, and low-spontaneous-rate AN fibers. Signal detection theory was used to evaluate psychophysical performance limits imposed by the random nature of AN discharges and by random-noise stimuli. The power-spectrum model of masking was used to estimate psychophysical auditory filters from predicted AN-model detection thresholds for a tone signal in fixed-level notched-noise maskers. Results demonstrate that the role of suppression in broadening peripheral tuning in response to the noise masker has implications for the interpretation of psychophysical auditory-filter estimates. Specifically, the estimated psychophysical auditory-filter equivalent-rectangular bandwidths (ERBs) that were derived from the nonlinear AN model with suppression always overestimated the ERBs of the low-level peripheral model filters. Further, this effect was larger for an 8-kHz signal than for a 2-kHz signal, suggesting a potential characteristic-frequency (CF) dependent bias in psychophysical estimates of auditory filters due to the increase in strength of cochlear nonlinearity with increases in CF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call